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Abstract

Mechanism design on social networks has attracted extensive
attention recently. The goal is to design mechanisms to incen-
tivize participants to invite more participants via their social
networks, and the challenge is that the participants are com-
petitors. Various mechanisms have been proposed for single-
/multiple-unit auctions, but it has been shown that it is chal-
lenging to design such mechanisms for more complex set-
tings. We move this forward to investigate a double auction
on a network where each trader (a buyer or a seller) can link
to other buyers and sellers. Incentiving invitation is more dif-
ficult than in multi-unit one-sided auctions, because there are
two different roles and a buyer (seller) seems happy to invite
a seller (buyer), but again the invited seller (buyer) may in-
vite another buyer (seller) to compete with the original buyer
(seller). To combat this, we propose a solution called dynamic
trade reduction (DTR), which also guarantees a non-negative
revenue for the market owner. Interestingly, our solution is
also applicable to the multi-unit one-sided auction when there
is only one seller linking to only buyers on the network. We
believe that the principle of our solution has the potential to
be extended to design the multi-item one-sided auction.

Introduction
Double auctions play a vital role in today’s economy, of-
fering a rich set of trading rules for commodity exchange
among traders (Friedman and Rust 1993). Similar to other
auction studies, research in double auctions aims to iden-
tify dominant strategies for both sellers and buyers to hon-
estly report their valuations. One well-known mechanism
for this purpose is the Vickrey-Clarke-Groves (VCG) mech-
anism (Vickrey 1961; Clarke 1971; Groves 1973). How-
ever, the VCG mechanism can lead to a deficit for the mar-
ket owner. To remove the deficit, McAfee 1992 proposed a
trade reduction mechanism, which reduces the number of
traded buyers and sellers (i.e. social welfare) to increase
their payments. Following McAfee’s work, several studies
(e.g. (Yoon 2001)) were directed at improving social wel-
fare while maintaining a no-deficit condition.

We take the study of double auctions to a new perspec-
tive, which considers a social network among traders. This
is a new trend in mechanism design, and the new goal is to
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incentivize traders to invite their neighbours to join the same
auction (Zhao 2021). The challenge is also very obvious be-
cause the traders are competitors and they would not invite
each other with the existing mechanisms. Existing studies
investigated one-sided auctions where the network only con-
tains buyers (Li et al. 2022), while in the double auction, we
have two different types of traders (buyers and sellers) in the
network. Therefore, we cannot directly apply the techniques
from one-sided auctions to the double auction.

The very first one-sided auction proposed for the new per-
spective is for selling a single item (Li et al. 2017). They
solved the problem by offering each buyer the marginal con-
tribution on social welfare due to his participation, which
will resolve their concern about their invitees competing
with them. Following their solution, there is a rich body of
studies around single-item auctions (Guo and Hao 2021).
However, the problem is very complex in the multi-unit or
multi-item settings (Zhao 2022). Double auctions are similar
to multi-unit one-sided auctions, but the number of units to
be sold is determined by the sellers from the network which
is unknown in advance. Therefore, the problem is more chal-
lenging than the multi-unit one-sided auctions (Zhao et al.
2018; Kawasaki et al. 2020). Actually, we will propose a
double auction mechanism which is also applicable for the
one-sided multi-unit auction in the network setting.

In the paper, we propose a double auction to satisfy the
following goals: traders will truthfully report their valua-
tions (traditional incentive compatibility), the market owner
should not run in a deficit (weakly budget balance), and
each trader (a seller or a buyer) is incentivized to invite all
his neighbours to join the auction (our new goal). In the
traditional setting without a network, to achieve the first
two goals, McAfee’s trade reduction is the classic solu-
tion (McAfee 1992). However, we will show that this can-
not be directly used in the network setting to achieve the
third goal because the reduction does not consider the com-
petition between invitees and inviters. Our solution, called
dynamic trade reduction, is inspired by McAfee’s trade re-
duction and we use a modified version of it as a meta-
mechanism of our solution. The high-level intuition of the
solution is that we use the meta-mechanism to work on a
small set of traders (initially only the traders who are in the
market without invitation) to decide which traders cannot
trade for sure, and these traders are allowed to invite their



neighbours to join. This repeatedly proceeds until we can-
not get new traders to join the mechanism. This can also be
applied to the one-sided multi-unit auction by simply adding
a number of dummy sellers without invitation and running
our mechanism with the dummy sellers and the buyer net-
work.

In summary, our work advances the state of the art as the
following:

• We propose the first double auction mechanism working
on a trader network to incentivize traders to invite each
other to enlarge the market.

• The solution also guarantees that traders will report their
valuation truthfully and it will not give the market owner
(the auctioneer) a deficit. In the enlarged market, our ex-
periments demonstrate that the social welfare of the solu-
tion is almost optimal (although in theory, optimal social
welfare is not achievable with the other properties).

• Surprisingly, our mechanism also offers a solution for the
one-sided auction of selling multiple units to a buyer net-
work where each buyer requires at most one unit, which
is an open challenge with many failed attempts.

In recent years, mechanism design over social networks is
a hot topic that explores truthful mechanisms on social net-
works (Zhao 2021; Zhang and Zhao 2022; Li et al. 2022). Li
et al. (2017) firstly considered a single-item auction design
problem on social networks where buyers have incentives
to invite their neighbors to join the auction. This inspired a
series of followups to extend the setting (Zhao et al. 2018;
Kawasaki et al. 2020; Liu, Lian, and Zhao 2023; Fang et al.
2023). Moreover, except for auctions, similar studies were
also stimulated in other games such as matching (Kawasaki
et al. 2021; You et al. 2022; Yang et al. 2022) and coopera-
tive games (Zhang and Zhao 2022).

Our work follows the line of auction design in networks
and we propose the very first double auction solution in the
network setting.

The Model
We consider a double auction market that operates on a so-
cial network. The social network is represented by an undi-
rected graph denoted as G = (N,E). It consists of two dis-
tinct groups of traders: sellers and buyers. We can represent
this as N = B ∪ S, where S = {S1, S2, · · · , S|S|} is the
set of sellers and B = {B1, B2, · · · , B|B|} represents the
set of buyers, each of them offering to sell or buy one unit
of the same commodity. The edges between the traders rep-
resent their neighbourhood relationship. Specifically, edge
(i, j) ∈ E indicates that agents i and j are neighbors of
each other. Let ri ⊆ N be the set of all neighbors of agent i
in the network. Note that if agents i and j are not neighbors,
they are unable to interact with each other (i.e., they do not
know each other in practice). This is also the reason why we
need traders’ invitations to involve all traders.

In the double auction market on the social network, a
third-party called auctioneer runs the auction to decide the
winning traders and their payments. We assume that not all
traders from the network are in the market initially, i.e., there

is only a subset of traders denoted by N0 = B0∪S0 who are
aware of the auction from the beginning. Without any pro-
motion, the auction can only run among the initial traders.

As we mentioned in the introduction, our goal is to design
a new double auction to incentivize the existing traders to
invite their neighbours to join the auction. Eventually, only
traders who received proper invitations are aware of the auc-
tion and can ask/bid to sell/buy. In our model, we model
their invitation behavior as reporting their neighbor set to
simplify the notations. Thus, the new action of each trader
in our model is to report both his valuation and his neighbor
set.

More formally, θi = (vi, ri) is the private type of trader
i ∈ N , where vi represents the trader’s valuation to own one
unit of the commodity. For a seller i ∈ S, his goal is to sell
one unit at a price not lower than vi, and for a buyer j ∈ B,
the objective is to purchase one unit at a price not higher
than vj . Let θ = (θ1, · · · , θn) denote the type profile of all
traders and θT = (θi)i∈T be the type profile of traders in T
only. Additionally, we use θ−i to represent the profile of all
traders except for trader i, and θ can be written as (θi, θ−i).
Furthermore, let Θi be the type space of trader i and Θ be
the type profile space of all traders.

A double auction asks each trader to report his type and
let θ′i = (v′i, r

′
i) be the type report of agent i, where r′i ⊆

ri, indicating that the reported neighbor set is a subset of
the true neighbor set1. Let θ′ = (θ′1, · · · , θ′n) be the report
profile of all agents in N . Note that in practice, uninvited
agents will not be able to join the auction. However, in the
model, we assume all agents can report, but only the reports
of properly invited agents are used. The uninvited agents’
reports are used as potential reports if they are invited. This
is very useful for us to define the properties such as incentive
compatibility, which requires a trader to invite a neighbor or
not (so we need to know the report of a uninvited trader in
the definition).

Given a report profile θ′, we generate a directed graph
G(θ′) = (N(θ′), E(θ′)). In this graph, an edge ⟨i, j⟩ ∈
E(θ′) exists if and only if j ∈ r′i. This edge indicates that
agent i reports agent j as a neighbor. Therefore, the directed
graph G(θ′) is constructed based on the reported neighbors,
which may not be the original trader network if someone
misreported.

Given traders’ type report profile, a general double auc-
tion is defined as follows.
Definition 1 (Double Auction). A double auction mecha-
nism in the social network is defined by an allocation policy
π = (πi)i∈N and a payment policy p = (pi)i∈N , where
πi : Θ → {0, 1} and pi : Θ → R are the allocation and
payment functions for i ∈ N respectively. For a trader i,
πi(θ

′) = 1 means i holds one unit and πi(θ
′) = 0 means

not. p(θ′) > 0 indicates that i will pay p(θ′) to the mecha-
nism, otherwise i will receive |p(θ′)| from the mechanism.

As in practice, only the traders who are properly invited
can join the auction, so we should use traders’ report to first

1We do not consider the case that a trader can create fake neigh-
bours, so they cannot report traders who are not their neighbours
because they are not aware of each other.



identify which traders are qualified to join the final alloca-
tion. We say trader i is qualified under θ′ if and only if there
is at least one directed path from a trader in N0 to i in G(θ′)
(a proper invitation chain from one initial trader). Let Q(θ′)
be the set of all qualified agents under θ′. The a special ver-
sion of the double auction, called diffusion double auction,
is defined to work on only qualified traders.

Definition 2 (Diffusion Double Auction). A diffusion dou-
ble auction mechanism is a double auction mechanism such
that for all reported type profiles θ′, it satisfies:

1. for all unqualified agents i /∈ Q(θ′), πi(θ
′) = 1 if i is a

seller, otherwise πi(θ
′) = 0 and pi(θ

′) = 0.
2. for all qualified agents i ∈ Q(θ′), πi(θ

′) and pi(θ
′) are

independent of the types of all unqualified agents.

A feasible diffusion double auction can only allocate the
items between the traders who are qualified. Besides, the
number of units in the allocation should be the same before
and after the allocation. We only consider feasible alloca-
tions in the rest of this paper.

Definition 3. We say an allocation π is feasible if for all
traders’ type report profile θ′:

1. for all i ∈ S , if i is unqualified, then πi(θ
′) = 1;

2. for all i ∈ B, if i is unqualified, then πi(θ
′) = 0;

3.
∑

i∈S∩Q(θ′) πi(θ
′) +

∑
i∈B∩Q(θ′) πi(θ

′) = |S ∩Q(θ′)|.
When an allocation is determined, social welfare can be

defined as SW (θ′, π) =
∑

i∈S∪B πi (θ
′) v′i.

Given a report profile θ′ and a double auction (π, p), the
utility of each trader under the auction is defined as:

ui (θ
′, (π, p)) =

{
πi (θ

′) vi − pi (θ
′) i ∈ B

(πi (θ
′)− 1)vi − pi (θ

′) i ∈ S
(1)

Next, we define the key properties to design a diffusion
double auction.

We say a mechanism is individually rational if for each
trader, her utility is non-negative when she truthfully reports
her valuation, no matter how many neighbors she invited and
what the others do.

Definition 4. A diffusion double auction mechanismM =
(π, p) is individually rational (IR) if for ∀i ∈ N , ui((θ

′
i =

(vi, r
′
i), θ

′
−i), (π, p)) ≥ 0 for all r′i ⊆ ri and for all θ′−i ∈

Θ−i.

The most important property is incentive compatibility,
which requires that reporting true type is a dominant strategy
for all traders. This guarantees that each trader will not only
report his valuation truthfully, but also invite all his neigh-
bours to join the auction (in practice).

Definition 5. A diffusion double auction mechanismM =
(π, p) is incentive compatible (IC) if for all i ∈ N , all θi ∈
Θi and all θ′ ∈ Θ′, ui(θi, θ

′
−i), (π, p)) ≥ ui(θ

′, (π, p)).

The following property is related to the auctioneer’s rev-
enue.

Definition 6. Given a report profile θ′ ∈ θ and a diffusion
double auction mechanismM, the revenue/profit of the mar-
ket owner is defined by the sum of all buyers’ and sellers’

payments, which is denoted byR(θ′) =
∑

i∈S∪B pi(θ
′). We

say M is weakly budget balanced (WBB) if for all report
profiles θ′ ∈ θ,R(θ′) ≥ 0.

With all the notations well-defined, we will design a dif-
fusion double auction that is IR, IC and WBB.

The Dynamic Trade Reduction
In this section, we will first introduce McAfee’s trade reduc-
tion and show why it does not work to achieve the properties
in the network setting. Then we will modify the trade reduc-
tion to consider a reserve price which is the key element of
our new mechanism called dynamic trade reduction. Finally,
we prove that the new mechanism satisfy all the desirable
properties.

McAfee’s Trade Reduction on Network
McAfee proposed a trade reduction mechanism for the tra-
ditional exchange setting without network (McAfee 1992).
The idea is to remove the pair with the lowest buying and
the highest selling reports from the efficient allocation to set
up the payments to the other buyers and sellers. McAfee’s
trade reduction mechanism can be formally extended to the
network model (which just ignores the network) as follows:

Algorithm 1: McAfee’s Trade Reduction (MTR)
Input: θ′

1. Given the report profile, order all sellers according their
valuation reports as v′s1 ≤ v′s2 ≤ · · · ≤ v′sm and all the
buyers as v′b1 ≥ v′b2 ≥ · · · ≥ v′bn (with a random tie-
breaking).

2. The efficient number of trades is the number k ≤
min{m,n} satisfying v′bk ≥ v′sk and v′bk+1

< v′sk+1
.

If such k does not exist, then no item will be traded (i.e.,
πi(θ

′) = 1 for all sellers and πi(θ
′) = 0 for all buyers,

pi(θ
′) = 0 for all traders), skip the rest process.

3. If p0 =
v′
bk+1

+v′
sk+1

2 ∈ [v′sk , v
′
bk
], then all the first k

sellers and buyers can trade at price p0.
4. Else, only the first k−1 pairs can trade where each seller

receives v′sk and each buyer pays v′bk .
Output: π, p

Theorem 1. McAfee’s trade reduction in the network setting
is not IC.

Proof. We prove it via an example in Figure 1. Assume
that all traders truthfully report their types. First, order
all sellers as S6, S4, S8, S5, S1, S2, S3, S7, and buyers as
B5, B6, B1, B3, B4, B2. The efficient number of traders k =
5 since v′S1

= 4 ≤ v′B3
= 4.5 and v′S2

= 4 > v′B4
= 3.5.

p0 =
v′
S2

+v′
B4

2 = 7.5
2 /∈ [v′S1

, v′B3
], so only 4 pairs can trade

(Each buyer pays 4.5 and seller receives 4). However, S2

(not trade) will not report S4 honestly and then trade a com-
modity successfully (receiving 4.5). Thus, directly applying
McAfee’s trade reduction in the network setting is not IC.



Figure 1: An example of MTR not satisfying IC in a social
network. Assume that all traders truthfully report their types.
The circular border indicates a seller; the square border in-
dicates a buyer; the red border indicates that this trader is in
a trade, the black border indicates that this trader is not in
a trade; the number in the upper right corner of each trader
represents their valuation. The yellow dashed square border
indicates the initial traders. The grey line indicates that the
two traders it connects are neighbors. Neighbor relationships
are not used in MTR.

Figure 2: An example of DTR in a social network. Other
than the parts that are the same as Figure 1, the black line
indicates that this line has been used for an invitation; the
gray line indicates that this line has not been used for an
invitation.

Dynamic Trade Reduction
Although McAfee’s trade reduction cannot be directly used
in our setting because it ignores the competition between in-
vitees and inviters, its payment policy is still useful to guar-
antee no deficit. One observation is that if we run the re-
duction only among the initial traders N0, then those traders
who cannot trade now are very unlikely to trade if we get
more traders involved. Our new mechanism will use this ob-
servation to dynamically involve traders in the reduction. To
do so, we will need a modified version of McAfee’s trade
reduction to iteratively check which traders we can involve
in the new mechanism. The modification is called Trade Re-
duction with Reserve Price (TRP). TRP uses a predefined
reserve price pair (p∗s, p

∗
b) to reduce the trade, which is de-

fined as follows.

Algorithm 2: Trade Reduction with Reserve Price (TRP)
Input: sellers Ts and buyers Tb with their valuation report
profile and a reserve price pair (p∗s, p

∗
b)

1. Let qs = |{i|v′i ≤ p∗s, i ∈ Ts}| and qb = |{i|v′i ≥ p∗b , i ∈
Tb}| be the quantities of sellers and buyers who satisfy
the condition of the reserve prices.

2. Let q = min(qs, qb) and T ∗
P be the set of the lowest q

sellers and the highest q buyers. Let T ∗
U = (Ts∪Tb)\T ∗

P
be the untraded traders.

3. If qs > qb, let ps be the (qb + 1)-th lowest seller’s valua-
tion and pb be p∗b .
If qs < qb, let ps be p∗s and pb be the (qs + 1)-th highest
buyer’s valuation.
If qs = qb, let ps be p∗s and pb be p∗b .

Output: T ∗
U , (ps, pb)

Given traders Ts∪Tb, TRP determines the traders who can
potentially trade as T ∗

P and the untraded traders as T ∗
U who

are the traders not be able to trade for sure in our new mech-
anism. Additionally, it also gives a new price pair (ps, pb)
to separate T ∗

P and T ∗
U . It is evident that the new price pair

satisfy ps ≤ p∗s and pb ≥ p∗b .
Given the above trade reduction with a reserve price,

we define our mechanism called Dynamic Trade Reduction
(DTR). DTR uses TRP to iteratively update the reserve price
pair and dynamically explore the network. The intuition be-
hind DTR is that it decides which traders cannot trade for
sure with the current set of traders, the neighbors of those
traders are added to the trader set and then repeat this process
until we cannot get new traders to join the mechanism. To
simplify the description, we introduce a notation that com-
putes all the neighbors for a given set of traders.
Definition 7. Given a set of traders T ⊆ N , we define
a function R(T ) =

⋃
i∈T r′i to represent all the reported

neighbors of T .



Algorithm 3: Dynamic Trade Reduction (DTR)
Input: θ′, S0, B0

1. Initialize T = S0 ∪B0 and let π∗, p∗ = MTR(θ′T ).
If ∃i ∈ S0, j ∈ B0 such that π∗

i (θ
′
T ) = 0 and π∗

j (θ
′
T ) =

1, then let ps = −p∗i (θ′T ), pb = p∗j (θ
′
T ).

Otherwise, let ps = min(mini∈S0
v′i,maxi∈B0

v′i), pb =
max(mini∈S0 v

′
i,maxi∈B0 v

′
i).

Let TU = {i|π∗
i (θ

′
T ) = 1, i ∈ S0} ∪ {i|π∗

i (θ
′
T ) = 0, i ∈

B0}.
2. Loop:

(a) T = T ∪R(TU ).
(b) T ∗

U , (ps, pb)← TRP (θ′T\TU
, (ps, pb)).

(c) If R(T ∗
U ) ⊆ T , terminate the loop, otherwise set TU =

TU ∪ T ∗
U .

3. For all traders i ∈ Q(θ′) \ T or i ∈ TU , buyers do not
receive items and sellers keep their items with zero pay-
ments, i.e.,

πi(θ
′) =

{
1 if i is a seller
0 if i is a buyer

(2)

pi(θ
′) = 0 (3)

For all traders i ∈ T \ TU , the allocation π and the pay-
ment p are defined as:

πi(θ
′) =

{
0 if i is a seller
1 if i is a buyer

(4)

pi(θ
′) =

{− ps if i is a seller
pb if i is a buyer

(5)

Output: π, p

We provide an example depicted in Figure 2 to demon-
strate how our mechanism works. In Step 1, T = N0 =
{S1, S2, S3, B1, B2, B3}, i.e. S1, S2, S3 and B1, B2, B3 are
initial traders. We get TU = {S3, B3} after conducting
MTR and choose ps = pb = 5. In Iteration 1 of Step 2,
R(TU ) = {S5}, then TU = {S2, S3, B3} and ps = 4, pb =
5 after conducting TRP; in Iteration 2 of Step 2, R(TU ) =
{S4, S5, S6, B4, B5}, then TU = {S1, S2, S3, B3, B4} and
ps = 4, pb = 5 after conducting TRP; in Iteration 3 of
Step 2, R(TU ) = {S4, S5, S6, S8, B4, B5, B6}, then TU =
{S1, S2, S3, B3, B4} and ps = 4, pb = 5 after conduct-
ing TRP. Since R(TU ) ⊆ T , Step 2 terminates. Finally,
T \ TU = {S4, S5, S6, S8, B1, B2, B5, B6}, all sellers sell
their item and receive ps = 4, all buyers receive an item and
receive pb = 5.

To prove the properties of DTR, we define some symbolic
representations. The initial price pair set by MTR is denoted
as (p0s, p

0
b), the sets of traders who can trade or cannot trade

are denoted as (T ∗
P )0 and (T ∗

U )0 respectively while initial
traders are T 0, and the initial number of transactions is de-
noted as q0 =

|(T∗
P )0|
2 . Assume the total number of iterations

of Step 2 (TRP) in DTR is k. Similarily, for all i = 1 . . . k,
we define the notion (pis, p

i
b),(T

∗
P )i, (T

∗
U )i, q

i =
|(T∗

P )i|
2 and

T i after the i-th TRP working on sellers T i
s and buyers T i

b .

Theorem 2. DTR is IC and IR.

Proof. First, we show that every trader reports all her neigh-
bors truthfully. Step 1 of DTR does not use the information
of neighbors and is then naturally independent of reported
neighbors for all traders. For each iteration i from 1 to k of
Step 2, we consider two cases for each trader x ∈ T i after
conducting the i-th TRP.

Case 1: x ∈ (T ∗
P )i. (p

i
s, p

i
b),(T

∗
P )i, (T

∗
U )i and T i are in-

dependent of her reported neighbors, which also implies that
the next TRP is independent of her reported neighbors.

Case 2: x ∈ (T ∗
U )i. Then her report of neighbors is inde-

pendent of her utility because she cannot trade for sure.
Hence, all traders i ∈ T in all iterations of Step 2 will

report truthfully.
Second, we show that every trader reports her valuation

truthfully. In the i-th iteration of TRP (specially, i = 0 repre-
sents MTR), we also consider two cases for a seller x ∈ T i.

Case 1: x ∈ (T ∗
P )i. (1) if she misreports her valuation as

v′x < vx, she is still in (T ∗
P )i and pis, p

i
b does not change; (2)

if she misreports v′x > vx, either she cannot trade for sure or
she is still in (T ∗

P )i with pis, p
i
b not changing.

Case 2: x ∈ (T ∗
U )i. (1) if she misreports her valuation

as v′x < vx to join in (T ∗
P )i and change pis to pi

′

s , she will
always have negative or equal utility since vx ≥ pis ≥ pi

′

s ≥
v′x and pis monotonically decreases (pi+1

s ≤ pis); (2) if she
misreports v′x > vx, her utility is still zero.

The analysis for a buyer is similar. Hence, reporting val-
uation truthfully is a dominant strategy in all iterations of
Step 2 for all traders i ∈ T .

Obviously, reports of all traders i ∈ Q(θ′) \ T are not
considered. Thus, any trader has no incentive to misreport.
Therefore, DTR is IC.

Finally, we prove that DTR is IR. For any seller i, if i ∈
T \ TU , her utility is ps − vi ≥ 0; otherwise, her utility is
0. For any buyer i, if i ∈ T \ TU , her utility is vi − pb ≥ 0;
otherwise, her utility is 0 = 0.

Although DTR satisfies IC, there is no positive incentive
to report truthfully. This can be solved by mild extensions on
DTR. Here we give one simple variation case. In new DTR,
we can add a new step between Step 2 and Step 3. In this new
step, all sellers (buyers) in T can invite all their buyer (seller)
neighbors to join T and then run TRP one more time. After
this adjustment, it is easy to prove that it still satisfies all
properties shown in Theorems 2 and 3. Since the extensions
complicate the proofs a lot, we do not elaborate on them
here.

We next prove that DTR is WBB. Not only can DTR avoid
deficits, but we can also show that DTR is comprehensively
superior to MTR only for initial traders (without diffusion).
More specifically, we show that for the number of transac-
tions, social welfare, and revenue, DTR is always greater
than or equal to MTR for initial traders.

Theorem 3. DTR is WBB, and for the number of transac-
tions, social welfare, and revenue, DTR is always greater



than or equal to MTR only for initial traders (without diffu-
sion).

Proof. Since R(θ′) =
∑

i∈B pi(θ
′) +

∑
i∈S pi(θ

′) =∑
i∈T\TU

(pb − ps) ≥ 0, DTR is WBB. Next, we show
that the number of transactions, social welfare, and rev-
enue monotonically increase during each iteration of TRP
in DTR. Due to the monotonically increasing property, The-
orem 3 stated above can be proved.

We firstly show that the number of transactions qi mono-
tonically increases. It is easily proved that (T ∗

P )i−1 ⊆
T i
s ∪ T i

b for each 1 ≤ i ≤ k. This result implies that
(T ∗

P )i−1∩S ⊆ (T i
s∪T i

b )∩S = T i
s . Thus, in the i-th iteration

of TRP, qis = |{i|v′i ≤ pi−1
s , i ∈ T i

s}| ≥ qi−1 = |{i|v′i ≤
pi−1
s , i ∈ (T ∗

P )i−1∩S}| and similarly qib ≥ qi−1. Therefore,
qi = min{qis, qib} ≥ qi−1, which means qi monotonically
increases.

Secondly, the i-th iteration of TRP lets items be assigned
to the buyers with qi highest valuations from qi lowest valua-
tions of sellers in T i. Meanwhile, since the number of trans-
actions monotonically increases, social welfare also mono-
tonically increases.

Finally, for the revenue, since pis ≥ pjs and pib ≤ pjb for
all i < j, (pi−1

b − pi−1
s )qi−1 ≤ (pib − pis)q

i for 1 ≤ i ≤ k.
Thus, revenue also monotonically increases.

Experiments
As proved in the last section, we show that the social welfare
of DTR is always greater than or equal to McAfee’s trade
reduction, which is applicable exclusively to initial traders.
However, to what extent DTR can enhance, and how large
the gap with the optimal solution is, remain questions. Thus,
we aim to evaluate the efficiency of our mechanism in in-
creasing social welfare. This assessment involves altering
the graph’s connectivity and adjusting the initial number of
traders. Our findings indicate that our mechanism performs
effectively in both of these settings.

We adopt the ‘small-world’ network structure (Watts and
Strogatz 1998) as the foundation of our experiments, known
for its ability to effectively model real-world social net-
works. In each experimental group, we will compare two
mechanisms (MTR for initial traders and DTR) with opti-
mal social welfare. We run MTR among initial traders to
assess our mechanism’s influence on inviting other traders
and compare it with the ideal result to measure the gap from
optimality. The ratio between the social welfare of the two
mechanisms and the optimal social welfare is used to illus-
trate the results.

Connectivity of Social Networks
In this experiment, we study the impact of the connectivity,
denoted as c = k

|N | , where the parameter k indicates the
expected number of neighbors for each agent in Wattz and
Strogatz’s model. We maintain fixed values of |N0| = 300,
|S| = |N |

2 = 500 and fixed rewiring probability pr = 0.3.

Figure 3: The changes of social welfare ratio in 1000 ‘small-
world’ graphs generated for c ∈ [0, 1]. The minimum scale
for c is 0.004.

The valuations of all traders are randomly selected (indepen-
dently and uniformly) from the set {0, 1, 2, . . . , 10000}.

The experimental results are shown in Figure 3. Given the
constant value of |N0|, the average social welfare of MTR
for initial traders maintains at a low level. In contrast, the
average social welfare of DTR increases very rapidly and
when c ≥ 0.03, the outcomes of DTR approach nearly opti-
mal social welfare.

The Number of Initial Traders
In the second experiment, we shift our focus to investi-
gate the impact of the number of initial traders |N0|. We
set |N | = 1000, c = 0.3 and fixed rewiring probabil-
ity pr = 0.3 to generate networks, while also keeping
|S| = |N |

2 = 500 fixed. The valuations of all traders are
randomly selected (independently and uniformly) from the
set {0, 1, 2, . . . , 10000}.

The experimental results are shown in Figure 4. As the
number of initial traders increases, the average social wel-
fare of MTR for initial traders demonstrates a linear rise,
gradually approaching the optimum level. Similar to the first
experiment, the outcomes of DTR increase very rapidly and
closely approach the optimal social welfare when |N0| ≥
200. When |N0| = |N |, the average social welfare of both
DTR and MTR for initial traders nearly approaches the op-
timal level.

Application to Multi-unit One-sided Auction
Double auctions are similar to multi-unit one-sided auctions,
but they present more difficulties because the number of
units to be sold determined by the sellers is unknown in ad-
vance. In this section, we will illustrate that our approach,
the DTR mechanism for double auctions within social net-
works, can also work for the multi-unit one-sided auction
setting.



Figure 4: The changes of social welfare ratio in 1000 ‘small-
world’ graphs generated for |N0| ∈ [5, 1000]. The minimum
scale for |N0| is 1.

Multi-unit auctions in a social network address scenar-
ios where a seller offers multiple homogeneous items for
sale and only buyers are allowed to strategically report their
valuations and social connections. These auctions aim to
attract more buyers to increase the seller’s revenue. How-
ever, designing mechanisms that satisfy the essential incen-
tive compatibility (IC) property has been proven challeng-
ing. Previous attempts, such as GIDM (Zhao et al. 2018)
and DNA-MU (Kawasaki et al. 2020), failed to ensure IC
due to buyers’ potential manipulations for the auction out-
come. Another mechanism, SNCA (Xiao, Song, and Khous-
sainov 2022), addressed budget constraints among buyers,
but it deviates from the standard multi-unit diffusion auc-
tion. Consequently, achieving an IC mechanism remains an
enticing challenge.

Recent research has proposed two mechanisms that sat-
isfy truthfulness in multi-unit diffusion auctions. The LDM-
Tree mechanism (Liu, Lian, and Zhao 2022) employs com-
petition localization, concentrating competition within lay-
ers of a tree based on agent distance from the seller. MU-
DAN (Fang et al. 2023) is an iterative mechanism that al-
locates items to winners during graph exploration. Different
from these approaches, our mechanism offers a novel per-
spective on problem-solving. The key insight is that, until
the final iteration, no winners and their payment can be de-
termined during the iterative exploration.

In the following, we will present the adaptation of the
DTR mechanism to the setting of multi-unit one-sided auc-
tions. Consider a scenario where there is a seller with k
items, and all buyers are connected in a single network. In
this scenario, each buyer intends to purchase only one item.
To set up a double auction mechanism, we introduce a set
N0 comprising not only initial buyers but also k dummy
sellers, each offering one item. These dummy sellers pos-
sess zero valuation for the item without neighbors, and the
buyers’ neighbors are other buyers. In this setup, the DTR

can be directly employed to address the multi-unit problem.
We provide the formal description as follows:

Algorithm 4: Dynamic Trade Reduction for Multi-unit Auc-
tion (DTR4MA)
Input: the report profile of all buyers θ′B , the set of initial
buyers B0, and the number of units k.
1. Let S0 be k dummy sellers and their report profile is θ′S0

where θ′i = (0, ∅) for ∀i ∈ S0.
2. π, p = DTR(θ′B∪S0

, S0, B0).
3. The actual seller’s revenue is the sum of all the buyers’

payments.
Output: π, p

We’ve established earlier that DTR is an incentive-
compatible (IC), individual-rational (IR), and weakly
budget-balanced (WBB) mechanism. This extends to the
multi-unit scenario as well. As a result, our approach offers
an alternative mechanism that ensures IC in multi-unit auc-
tions, presenting a valuable solution for such cases.

Conclusion
To the best of our knowledge, this is the very first work in
designing a double auction mechanism over social networks,
where all traders (sellers and buyers) are distributed within a
single social network. We propose a solution to incentivize
traders to invite each other to join the auction and do not
give the market a deficit. Especially, our mechanism can also
solve the multi-unit one-sided auction problem easily. This
gives us a hint that our approach has the potential to be ex-
tended to more general combinatorial settings.

To design the invitation incentive, the main technique
used by the existing mechanisms relies on that an agent can
gain the payment difference when the agents invited by the
agent won the items (a kind of resale process). This tech-
nique is not scalable to combinatorial settings (Zhao 2022).
Our technique is very different from this main approach, and
it dynamically determines who cannot win for sure and al-
low them to invite their neighbors to join the auction. Since
an agent cannot win anyway, it does not hurt to invite others,
but it may also not bring any positive utility to invite others.
This could be compensated by manually adding some pos-
itive incentives. We believe that our approach could be ex-
tended to design multi-item auctions on networks, which is
a very challenging open question.
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